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ABSTRACT. We show that under the alternative hypothesis the Hausman chi-square test

statistic can be negative not only in small samples but even asymptotically. Therefore in

large samples such a result is only compatible with the alternative and should be inter-

preted accordingly. Applying a known insight from finite samples, this can only occur if

the different estimation precisions (often the residual variance estimates) under the null

and the alternative both enter the test statistic. In finite samples, using the absolute value

of the test statistic is a remedy that does not alter the null distribution and is thus admis-

sible.

[add the following paragraph for long summary:]

Even for positive test statistics the relevant covariance matrix difference should be

routinely checked for positive semi-definiteness, because we also show that otherwise

test results may be misleading. Of course the preferable solution still is to impose the

same nuisance parameter (i.e., residual variance) estimate under the null and alternative

hypotheses, if the model context permits that with relative ease. We complement the

likelihood-based exposition by a formal proof in an omitted-variable context, we present

simulation evidence for the test of panel random effects, and we illustrate the problems

with a panel homogeneity test.

Keywords: Hausman test, negative chi-square statistic, nuisance parameter

JEL code: C12 (hypothesis testing)

1. INTRODUCTION

The specification test principle proposed by Hausman (1978) is extremely popular be-

cause it is versatile and often easy to apply. However, it is well known that its application
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quite often leads to negative test statistics, caused by estimated parameter variance differ-

ences that are not positive semi-definite (not PSD). This experience is clearly worrying

given that the test statistic is distributed as χ2 under the null hypothesis. The consensus

(textbook) reaction is to attribute such annoying results to peculiar random data constel-

lations in given finite samples. Since the Hausman test principle relies on asymptotic

arguments, negative test statistics are only viewed as troublesome in practical work, not

as a more fundamental problem. As a representative example for various textbooks, the

authors of the popular Stata software agree that a negative statistic “is not an unusual

outcome for the Hausman test” (StataCorp, 2001, vol. 2, p. 13, in the context of multino-

mial logit models), but as usual they attribute their specific result to their relatively small

sample. This paper shows that this view is not entirely correct: We investigate whether

negative test statistics may occur even asymptotically and indeed find that this can happen

in some model classes if H1 is true.

We use a likelihood framework for our argument, because most interesting applications

employ likelihood methods or can be reformulated as such, although the Hausman test

procedure is applicable more generally. We deal with certain fixed alternative hypotheses

and ask what can happen if those are true. Our question is actually simpler than the

existing local-power studies, but apparently has never been systematically addressed. The

result of this gap in the literature is the erroneous belief that the occurrence of non-PSD

variance differences is always a small-sample problem. Note that our problem is unrelated

to that of Hausman and Taylor (1981), because they analyze the different issue of singular

variance differences.

Fortunately, it is clear that the well-known finite-sample solution to use the same esti-

mate of the estimation precision (residual variance) parameter under H0 as well as under

H1 also works in the limit.1 However, in some model contexts this remedy is either not

available or quite difficult to apply, and in those cases our findings can be useful.2 We

1It has long been known that the problem discussed in this paper is directly linked to the estimation of
the residual variance in many contexts, and thus it is a manifestation of the general problem of nuisance
parameter estimation, which is a fundamental problem in classical statistics. Therefore this note should in
no way be interpreted as a criticism of the Hausman test principle.
2For example, in the popular pooled mean-group estimation of dynamic panel models (see Pesaran et al.,
1999), a non-parametric technique is normally used to estimate the parameter variance in the unrestricted
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also point out that non-PSD variance differences can lead to spuriously small positive test

statistics that would imply false acceptances of H0.

The rest of this paper is divided into three sections. After briefly recapitulating the

Hausman test principle and introducing some necessary notation, the following section 2

develops the argument, contains an analytical example, and discusses possible solutions

of the problem. In section 3 we present simulation evidence for the widespread panel

test of random vs. fixed effects as well as a real-world empirical illustration of the issues

involved in a test of homogeneous panel coefficients. Finally, section 4 offers conclusions

and recommendations for applied work.

2. THEORY

2.1. The setup and notation. This section draws heavily from Holly (1982), but the

notation is not identical. Consider a parametric statistical model which for a sample

of size T gives a log-likelihood that depends on two parameter vectors: `(θ ,γ). The

respective dimensions of the parameter (column) vectors are kθ and kγ . The true values of

the parameters are denoted by θc and γc (“c” for correct), and it is important to note that we

keep the true value θc fixed and in particular independent of the sample size T . We wish

to test the hypothesis H0 : θ = θ0 with a Hausman test, and we assume kγ ≥ kθ to ensure

that the test works in all directions. The Hausman test analyzes the difference between

two estimators of γ , the first of which is simply the unrestricted maximum-likelihood

estimator of the entire model, denoted by θ̂u and γ̂u (“u” for unrestricted). Under standard

regularity conditions it is clear that plim θ̂u = θc and plim γ̂u = γc, so this estimator is

consistent in particular for γ . The second estimator imposes the null hypothesis θ = θ0

and therefore does not estimate θ . Denote the resulting H0-estimate for γ by γ̂0. The

Hausman test statistic is given by a quadratic form of the scaled vector of contrasts:

m̂ = (γ̂0− γ̂u)′
(
V̂(γ̂u)− V̂(γ̂0)

)−1
(γ̂0− γ̂u) (2.1)

model, and thus replacing the residual variance estimate is simply not possible. Another important case is
the use of robust estimators of parameter (co-) variances where the residual variance estimate is not easily
separable from the estimated parameter variance.
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where the V̂(.) are the estimated covariance matrices of the parameter estimates. If H0

is true then γ̂0 is asymptotically more efficient than γ̂u, such that T 2rc
(
V̂(γ̂u)− V̂(γ̂0)

)
tends to a PSD matrix, where rc denotes the convergence rate of the specific model con-

text (which will often be 0.5). From Hausman (1978) we know that m̂ is asymptotically

distributed as χ2(kγ) if H0 is true.

For a (not necessarily consistent) estimator β̂ we denote with Avar(β̂ ) the asymptotic

covariance matrix in the standard sense that it is minus the inverse of the limit of the

expected average Hessian: Avar(β̂ ) = −
(
limT→∞ Eβ (T−1H)

)−1, where the Hessian H

has typical element ∂ 2`/(∂βi∂β j), and evaluation is at plim β̂ . We can also write this

in terms of the asymptotic information matrix: Avar(β̂ ) = I −1. Therefore, we write

the parameter variance of the H0-model as Avar(γ̂0) =
(
I 0

γγ

)−1
, and in the unrestricted

maximum-likelihood estimate we can partition the inverse of the parameter variance ma-

trix according to our partitioned parameter vector:

Avar

 γ̂u

θ̂u

=

 I u
γγ I u

γθ

I u
θγ

I u
θθ

−1

(2.2)

We derive Avar(γ̂u) by applying the formula for partitioned inverses to equation (2.2),

which yields:

Avar(γ̂u) =
(
I u

γγ −I u
γθ (I u

θθ )−1 I u
θγ

)−1
(2.3)

Since Holly (1982) showed that the underlying null hypothesis of the Hausman test is

actually (I u
γγ)
−1I u

γθ
(θ −θ0) = 0, we also assume I u

γθ
6= 0. Under this assumption it is

possible to attribute the test to θ alone, as it is intended.

2.2. General analytical considerations. Under H0 it is obvious that Avar(γ̂u)−Avar(γ̂0)

is a PSD matrix by construction of the Hausman test principle, and it is well known that

the corresponding estimated variance difference may only be non-PSD in finite sam-

ples, caused by peculiar random data constellations. Therefore it is only interesting

to consider the situation where H1 is true, and thus the essential question is whether
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Avar(γ̂u)−Avar(γ̂0) =
(
I u

γγ −I u
γθ

(
I u

θθ

)−1
I u

θγ

)−1
−(I 0

γγ)
−1 is necessarily a PSD ma-

trix even if θ0 6= θc. An equivalent question is whether

I u
γγ −I u

γθ (I u
θθ )−1 I u

θγ −I 0
γγ =

(
I u

γγ −I 0
γγ

)
−
(
I u

γθ (I u
θθ )−1 I u

θγ

)
(2.4)

is necessarily negative semi-definite (NSD), where only the term I u
γγ −I 0

γγ is am-

biguous. It is crucial to note that if this latter term is PSD under H1, this means that the

curvature of the likelihood function in the γ-direction is greater at the unrestricted estimate

(plim θ̂u,plim γ̂u) = (θc,γc) than at the wrong H0-value (θ0,plim γ̂0). This underestimated

curvature at the point of H0 then means that the stochastic noise components of the model

are overestimated when using the H0-model. If I u
γγ −I 0

γγ is PSD “so much” so that it

dominates the NSD term−I u
γθ

(
I u

θθ

)−1
I u

θγ
, it may render (2.4) indefinite or even PSD.

Therefore, the key problem of the Hausman test is the inconsistent estimation of the noise

component in the H0-model under H1, where in many models the nuisance parameter

called “stochastic noise component” will simply correspond to the residual variance.

To our knowledge it has not been noted so far in the literature that an asymptotic PSD

difference I u
γγ−I 0

γγ may dominate the last term in (2.4), implying that negative Hausman

test statistics may happen systematically even in large samples. Strictly speaking, this

finding means that the Hausman test can be regarded as consistent only if additionally

the NSD-ness of (2.4) is ensured, because otherwise the test statistic is not guaranteed to

diverge to +∞ in the entire parameter region of the alternative hypothesis. To substantiate

the claim that such an inconsistency of the test is possible we prove a simple analytical

example in section 2.3, and in section 3 we present simulation evidence as well as a

real-world illustration. Unfortunately, it is difficult to be more precise without further

specification of the model context because the Hausman principle is so widely applicable,

but see section 2.5 for a discussion of important exceptions.

2.3. A proved example in a simple context. It seems useful to consider an analytical

example to prove the asymptotic relevance of our arguments. Let the true regression
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model with classical properties and zero-mean variables be

yt = γx1,t +θx2,t +ut , (2.5)

where the null hypothesis is given by H0 : θ0 = 0, and the estimators of γ are used for a

Hausman test of H0. We use notation where r2
12 is the squared sample correlation between

x1 and x2, and r2
y2∗1 is the squared sample partial correlation between y and x2 after having

accounted for x1, i.e. r2
y2∗1 = 1− (SSRtotal/SSRy1), where SSRtotal denotes the sum of

squared residuals in the entire unrestricted model after regressing y on x1 and x2, SSRy1 is

the sum of squared residuals from regressing y only on x1.

Therefore plimr2
y2∗1 and plimr2

12 determine the relative amount of (asymptotically es-

timated) noise in the two models, influencing the difference of the likelihood curvatures

for θc 6= 0.3 Regressing y on x1 alone gives γ̂0 along with the residual variance estimate

σ̂2
0 and V̂(γ̂0) = σ̂2

0 (∑x2
1,t)
−1, and then regressing y on both x1 and x2 accordingly gives

γ̂u, σ̂2
u , and V̂(γ̂u) = σ̂2

u

(
(1− r2

12)∑x2
1,t

)−1
. It is of course essential for the example that

we have used different estimates for the residual variance, namely σ̂2
0 and σ̂2

u . We find:

plim T
(
V̂(γ̂u)− V̂(γ̂0)

)
< 0⇔ plimr2

12 < plimr2
y2∗1 (2.6)

Proof. Using the notation Syy ≡ ∑y2
t , and analogously S11 ≡ ∑x2

1,t etc. (S12,S22), and

with the textbook-style data matrix X for the unrestricted model we have

(X ′X)−1 =
1

S11S22−S2
12

 S22 −S12

−S12 S11

 , (2.7)

from which we need the upper-left element for V̂(γ̂u). It follows that

S22

S11S22−S2
12

=

S22
S2

12
1

r2
12
−1

=

S22
S2

12
r2

12

1− r2
12

=
1

(1− r2
12)S11

. (2.8)

3Note that the case plimr2
12 = 0 is ruled out by the assumption I u

γθ
6= 0, which was discussed before. Also

note that under H0 it holds that plimr2
y2∗1 = 0.
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Thus we get the expression for V̂(γ̂u) in the example. Using estimators for the residual

variance without degrees-of-freedom corrections we get

V̂(γ̂0)
V̂(γ̂u)

=
σ̂2

0
S11

σ̂2
u

S11(1−r2
12)

=
σ̂2

0
σ̂2

u
(1− r2

12) =
SSRy1

SSRtotal
(1− r2

12) =
1− r2

12
1− r2

y2∗1
, (2.9)

and the rest is obvious. �

Hence if the influence of the neglected variable (measured by r2
y2∗1) is strong enough

relative to any given sensitivity of the Hausman test (measured by r2
12), an asymptotically

negative test statistic must happen. Since plimr2
y2∗1 is a property of the DGP that can be

held fixed for all values of plimr2
12 ∈ [0;plimr2

y2∗1), we have shown that this result applies

to non-trivial regions of the parameter space (in the sense of forming a set of positive

measure).

2.4. Possible solutions. A good solution for the problem of non-PSD covariance matrix

differences is already well known, see for example Hayashi (2000, p. 233): Using only

one estimate of the stochastic noise component to calculate the Hausman test statistic

guarantees NSD-ness of (2.4). When translated to our asymptotic formulation, this means

to impose I u
γγ−I 0

γγ = 0, by using I u∗
γγ = I 0

γγ in place of I u
γγ , or I 0∗

γγ = I u
γγ in place of

I 0
γγ . This practice is valid because under H0 it holds that I 0

γγ =|θc=θ0 I u
γγ anyway, and

thus the limiting distribution under H0 is not affected.

Another general solution is to use a regression-based test approach whenever possible,

see for example Davidson and MacKinnon (1990). In that approach the equivalent of the

Hausman test is conducted as an F test in an auxiliary regresssion, and that test statistic is

obviously well-behaved.4

However, in some model contexts it is technically difficult to use only one estimate of

the noise component, or to set up the relevant auxiliary regression. In fact, the Hausman

test principle is so attractive because the two different specifications under H0 and H1

can be estimated separately and the results can be compared afterwards. In those cases

the most widespread “solution” of the problem of a negative test statistic is to ignore the

4A further abstract solution with very limited applicability is given by Ai (1995).
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test result. Often it is then recommended to not reject H0, and sometimes even explicit

advice is provided to “round” a negative test statistic to zero, which of course also implies

acceptance of H0. As we have shown, in large samples this strategy will lead to wrong

decisions. But even in small or medium-sized samples there seems to be a better solution

which allows a rejection of H0 at least sometimes, and that is to use |m̂| as the relevant test

statistic. If H0 is true and m̂ tends to a non-negative number then of course the test will be

unaltered by taking the absolute value, which makes it clear that this strategy is admissible

(asymptotically, like the Hausman test itself). On the other hand, in a situation such as in

subsection 2.3 where the test statistic would be asymptotically negative,5 using |m̂| would

not always lead to rejection of H0 because in finite samples m̂ may be a small negative

number. But at least in some cases the test would get a chance to actually reject H0 when

H1 is true. However, taking the absolute value is clearly only a second-best approach, and

whenever possible the well-known solutions discussed before should be applied.

2.5. A model class that is not affected by the problem. It is important to acknowledge

that in some model contexts it always holds that the parameter covariance difference is a

PSD matrix irrespective of whether H0 or H1 is true, and therefore in those contexts there

can be no problems with the Hausman test whatsoever. For example, consider the clas-

sic case of the Hausman test for endogeneity bias, where an instrumental-variable (IV)

estimator is evaluated against the OLS estimator, and the latter is appropriate only under

H0. Even though OLS is biased under H1, its asymptotic variance in a matrix sense is

always smaller than that of the IV estimator. (The key thing to acknowledge here is that

OLS minimizes the estimated residual variance, apart from using the Gauß-Markov the-

orem; of course, this residual variance estimate is then inconsistent, since we are looking

at the case where H1 is true.) Geometrically, the difference arises because OLS employs

orthogonal projections while in IV estimation the projections are non-orthogonal. Similar

examples that we can think of are therefore closely related to the geometry of IV esti-

mates, namely Hausman-type tests for endogeneity or over-identification in IV and GMM

5Note that in those cases the test statistic would diverge to−∞, because the bias term γ̂0− γ̂u does not vanish
asymptotically, but the estimated parameter variances still converge to zero.
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contexts. Therefore, a negative test statistic is always a small-sample problem in such

settings.

3. SIMULATION EVIDENCE AND EMPIRICAL ILLUSTRATION6

3.1. Simulation of the Hausman test of random effects. The two most widespread

applications of the Hausman test principle are probably the test for endogeneity using an

instrumental-variable framework, and the test of whether the random-effects estimator is

biased in the context of panel models with unobserved unit-specific effects. In section

2.5 we have already commented that negative test statistics and related problems cannot

occur in the context of instrumental-variable estimation. In contrast to that reassuring

result, we will now present simulation evidence that the Hausman test of the consistency

of the random-effects estimator in panel models may suffer from the problems discussed

in this paper. That is, negative test statistics are indeed possible asymptotically in this

context, of course depending on correlation and variance parameter constellations.

The standard panel framework is determined by the following data-generating process

(DGP) with unobserved unit-specific disturbances (or “effects”):

yit = xit + µi + εit (3.1)

This DGP has the following properties: the overall constant term is set to zero and

therefore vanishes from the equation,7 and the coefficient of the scalar regressor xit is

normalized to one. The cross-sectional means of the regressor follow a standard nor-

mal distribution (with expectation zero), implying that its variance is normalized to one:

Vi(x̄i) = 1, where x̄i = Etxit . In constructing xit we add independent normally distributed

noise to the x̄i, running three different sets of simulations using different amounts of

within-unit variance, namely Vt(xit) ∈ {0.2,1,5}. The unit-specific unobserved distur-

bances µi are constructed as a weighted average of the x̄i and an independent standard

normal distribution, so they also are centered at zero. The weight coefficient is varied

6The simulation was programmed in gretl 1.7 (Cottrell and Lucchetti, 2008), and the empirical results were
produced with Ox programs (Doornik, 2002). All codes are available from the author.
7However, a constant is included and not restricted when estimating the models on the simulated data.
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across a certain range in order to simulate different degrees of correlation between the

unobserved effects and the regressor, i.e. different “degrees of violation” of the null hy-

pothesis, measured as different amounts of correlation Corr(x̄i,µi). Obviously, the null

hypothesis holds if the weight on the x̄i in this linear combination approaches zero, be-

cause then the correlation between the regressor and the unobserved unit-specific effects

also tends to zero and the well-known random-effects estimator will be consistent (and

efficient). For simplicity we use the standard FGLS (feasible generalized least squares)

estimator for the random-effects model as a proxy of the more computationally demand-

ing maximum-likelihood estimator, but that does not change the qualitative conclusions

of the simulation exercise.8 Finally, the idiosyncratic disturbances εit are drawn from

another independent standard normal distrubution, again using a range of the variance

parameter V(εit).

In the simple omitted-variables example of section 2.3 the condition for asymptotically

negative Hausman test statistics can be interpreted to say that (a) the null hypothesis

must be “sufficiently” violated (r2
y2∗1 large enough), and that (b) a “helping” assumption

must be sufficiently close to being violated (r2
12 small enough). In the present context of

the Hausman test of random- vs. fixed-effects estimators we have similar interpretations

which are however a bit more complicated due to the additional dimension of the panel

data: The null hypothesis itself is (a) Corr(x̄i,µi) = 0, and the helping assumptions are

(b) that the idiosyncratic shock variance must be positive, V(εit) > 0, and (c) that the

within-variation of the regressor relative to the between-variation must not be infinite,

Vt(xit)/Vi(xit) < ∞. The reason for (b) is that for V(εit) = 0 the random- and fixed-effects

estimators are identical, thus the random-effects estimator does not provide additional

information, regardless of the status of the null hypothesis. Helping assumption (c) is

required for a similar reason; a higher within-variation of the regressor means that more

information of the data is available in the within dimension, and thus the fixed-effects

estimator precision approaches that of the random-effects estimator.

8For the model assuming “fixed” effects and thus applying the standard “within” transformation, the stan-
dard OLS estimator is identical to the maximum-likelihood estimator.
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To get negative test statistics, we therefore expect that the null hypothesis itself must

be sufficiently violated (|Corr(x̄i,µi)| large enough), and that the variance of the idiosyn-

cratic disturbance V(εit) must be small enough, whereas the within-variation of the re-

gressor Vt(xit) must be large enough. Of course, as in the example from section 2.3 and

throughout this paper, both residual variance estimates from the random- and fixed-effect

estimators must be used in constructing the Hausman test statistic to make negative test

statistics possible.

After simulating the asymptotic properties of the various parameter constellations with

large-N panel samples of 20000 observations each (N = 1000, T = 20), we indeed find

that pattern displayed in figure 3.1. We have put the (root of) the variance of the id-

iosyncratic shocks V(εit) on the x-axis and the tested correlation between the regressor

and the unobserved effects Corr(x̄i,µi) on the y-axis. To capture the third dimension

(varying degrees of within-variation of the regressor) we display several graphs, where

the within-variation of the regressor is increasing from top to bottom. The outcome of

each simulated parameter constellation is symbolized by ’+’ if the Hausman test yields

a positive test statistic, or by ’×’ if the test statistic is negative. We see that negative test

statistics consistently occur when the DGP has the “right” parameters. If the variance of

the idiosyncratic disturbance is relatively low and the within-variation of the regressor is

relatively high compared to the between-variation, relatively small departures from the

null hypothesis are sufficient to produce negative test statistics.

3.2. Empirical illustration with a Hausman test of homogeneous coefficients. We use

the context of a Hausman test against slope heterogeneity in a dynamic panel model for

illustration. Accounting for slope heterogeneity is important because ignoring hetero-

geneity in a dynamic setting leads to asymptotically biased estimates (see Pesaran and

Smith, 1995, and Pesaran et al., 1999). But not imposing homogeneity if it exists is inef-

ficient, and therefore a Hausman-type test for homogeneity is a natural approach.

We analyze the exchange rates of European monetary union (EMU) members with re-

spect to Japan (except Portugal for reasons of data availability), using an equation inspired
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FIGURE 3.1. Simulation of the Hausman test for consistency of random
effects. T = 20, N = 1000, for model specification details see the text.
Upper panel: standard error of within-variation of the regressor set to 0.2;
middle panel: ... set to 1; lower panel: ... set to 5. Positive Hausman test
statistics in a simulation denoted by ’+’, negative Hausman test statistics
by ’×’.
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by purchasing power parity (PPP):

sit = λisi,t−1 +φ
′
i xit +

q1−1

∑
j=1

αi j∆si,t− j +
q2−1

∑
j=0

δ
′
i j∆xi,t− j + µi + εit (3.2)

Here sit is the log nominal exchange rate of country i = 1...N (N = 11) against the

Japanese Yen in period t = 1...Ti, the vector xit contains the log price level pit of country i

and the log price level p∗t of Japan as the reference country. The implied long-run relation

is given by si = ζ1,(i)pi + ζ2,(i)p∗ (where bars denote steady-state values), the long-run

parameters are defined as ζ(i) = φ(i)/(1−λ(i)), and the well-known strong form of PPP

would imply ζi = ζ = (1,−1)′. The residual variance is denoted by σ2 = V(εit).

The sample consists of monthly observations 1980m1-1998m12 for all countries but

Italy, where data for 1980/81 are missing. Since the following formulae are valid for

fixed N, Ti > 200 seems sufficient to conduct asymptotic inference. For the sake of the

illustration we simply assume that the cointegration properties of the data justify estimat-

ing (3.2) directly, and that the errors εit are independent across countries and time. These

issues would have to be addressed in a more thorough analysis, and the economic results

should therefore be interpreted with caution. Let us define the entire parameter vector as:

β(i) = (λ(i),φ
′
(i),α1,(i), ...,αq1−1,(i),δ

′
1,(i), ...,δ

′
q2−1,(i))′.

Under H0 the model is homogeneous and is estimated with the fixed effects (FE) estima-

tor which imposes ∀i : βi = β . Under H1 we allow all individual coefficients to differ and

thus employ the mean group (MG) estimator proposed by Pesaran and Smith (1995). The

MG method estimates N separate equations and averages over all individual estimates,

i.e. β̂MG = N−1
∑

N
i=1 β̂i, where each β̂i is the OLS estimate of βi in a separate regression

for the i-th country. Both estimators are effectively performed as OLS given the respec-

tive assumptions and can thus be interpreted as maximum-likelihood estimators. The

following variance formulae hold (cf. Pesaran et al., 1996): Under the null hypothesis we

have V(β̂0) = V(β̂FE) = σ2 (
∑

N
i=1W ′i QiWi

)−1, where Wi is the Ti× (3 + q−1 + 2q) data

matrix holding the observations of all regressors for country i, and Qi = ITi −T−1
i 1Ti1

′
Ti

(with 1Ti being a Ti-element column vector of ones) is the “within”-transformation ma-

trix taking deviations from country-specific means. In contrast, the unrestricted estimate
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is V(β̂u) = V(β̂MG) = σ2

N2 ∑
N
i=1(W

′
i QiWi)−1. The variance difference V(β̂MG)−V(β̂FE)

assuming a known σ2 is basically the difference between the harmonic and arithmetic

means of some matrices and is necessarily PSD (again, see Pesaran et al., 1996).

The residual variance σ2 can be estimated consistently under H0 by two methods; either

using the (restricted) fixed effects residuals ε̂FE,it :

σ̂
2
0 =

1

∑
N
i=1 Ti−N

N

∑
i=1

Ti

∑
t=1

(ε̂FE,it− ε̂FE,i)2 (3.3)

where εFE,i is the individual-specific time-average of the estimated error term; or by

averaging the standard variance estimates σ̂2
i = T−1

i ∑t ε̂2
OLS,it :

σ̂
2
u = N−1

∑
i

σ̂
2
i (3.4)

Obviously, σ̂2
u ≤ σ̂2

0 because less restrictions are imposed, and this difference may

become important when those restrictions are not asymptotically justified.

3.2.1. A negative test statistic that means rejection. Arbitrarily choosing lags up to one

year (q1 = q2 = 12) produces some negative entries on the diagonal of the parameter

variance difference, which is thus clearly indefinite; of its 38 eigenvalues only 21 are

positive. A researcher who applies the Hausman test using different σ2-estimates for the

H0- and the H1-model would find that the Hausman test statistic is actually negative, see

table 1. Using σ̂2
u everywhere instead produces an extremely large positive test statistic

which leads us to reject joint homogeneity of all parameters. The bottom line here is that

discarding the Hausman test as “not applicable” or not rejecting H0 because of the initially

negative test statistic would have been a clear mistake.

3.2.2. The problem of hidden indefinite variance differences. Finally, let us point out a

problem even when the Hausman test statistic is positive. We can see this by testing β for

homogeneity using the lag structure q1 = 2, q2 = 1. This extreme choice is of course not

meant to be a serious PPP model specification, but the test results in table 2 are illumi-

nating. The test in the “natural” setup with different residual variance estimates produces

a positive but insignificant test statistic. However, the parameter variance difference is
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TABLE 1. A systematically negative test statistic

using different
estimates for σ2

with σ̂2
u

everywhere

# of neg. eigenvalues of
variance difference

17 (of 38) 0

Hausman statistic m̂ -13.7 78.6
p-value n.a. 0.00012

Note: Results refer to (3.2) with the lag structure described in section 3.2.1. Estimated
residual variances as defined in the text are σ̂2

u = 0.000484, σ̂2
0 = 0.000543.

TABLE 2. A pitfall even with a positive test statistic

using different
estimates for σ2

using σ̂2
u

everywhere

# of neg. eigenvalues of
variance difference 1 (of 6) 0

Hausman statistic m̂ 5.59 35.3
p-value 0.47 0.0000038

Note: Results refer to (3.2) with the lag structure described in section 3.2.2. Estimated
residual variances as defined in the text are σ̂2

u = 0.000613, σ̂2
0 = 0.000633.

indefinite again, and imposing the same residual variance estimate leads to an extremely

high test statistic implying unequivocal rejection. This example highlights the fact that

there is a potential problem whenever the parameter variance difference is not PSD, no

matter whether the test statistic itself is negative or not. Therefore, Hausman test ap-

plications should routinely check the definiteness of the parameter variance difference,

otherwise false test decisions may occur.

4. CONCLUSIONS

In this paper we have pointed out that the problem of non-PSD estimated variance

differences in Hausman tests can be systematic and is not always only a finite-sample

issue. A well-known symptom of this problem is the occurrence of negative test statistics

that defy the χ2 null distribution, but a non-PSD variance difference can also produce

misleading positive test statistics. Quite a bit of applied work might be affected by this

latter problem even though the respective researchers are not aware of it, because it has
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not been acknowledged in the literature that a non-PSD variance difference may persist

in infinite samples.

Therefore, whenever it is technically infeasible to apply the general solutions –namely

to impose the PSD-ness of the variance difference a priori or to use the equivalent auxil-

iary regression approach– we recommend to routinely check the estimated variance dif-

ference numerically for PSD-ness. If this check fails, it would be a sign of a considerably

worse fit of the H0-model, and it may then be worthwhile to apply a variance encompass-

ing test (see e.g. Mizon and Richard, 1986) or similar diagnostic tools. As a first remedy

in case of a negative test statistic, the researcher can use the absolute value of the statistic

instead, which leaves the test statistic asymptotically unchanged under H0. However, this

approach clearly cannot solve the problem of misleading positive test statistics.

In any case, finding a non-PSD parameter variance difference (and especially a negative

test statistic) should not per se be interpreted as evidence in favor of H0. This insight

applies especially to large samples because we have shown that an asymptotically negative

test statistic can happen, but only if H1 is true.
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