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Abstract

Distortionary effects of inflation on relative prices are the main argument for

inflation stabilization in macro models with sticky prices. Under indexation of non-

optimized prices those models imply a nonlinear and dynamic impact of inflation

on the cross-sectional price dispersion (relative price or inflation variability, RPV).

Using US sectoral price data we estimate such a relationship between inflation and

RPV. We confirm the impact of inflation fluctuations but find hitherto neglected en-

dogeneity biases, and our IV and GMM estimates indicate that average (“trend”)

inflation is significant for indexation. Lagged inflation is less important.
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1 Introduction

In this paper we analyze the impact of inflation on the cross-sectional dispersion of prices

(relative price variability, RPV) in the USA. In modern business cycle models with nom-

inal price rigidities (“New Keynesian” models) the distortionary effect of inflation on

relative prices is the main argument for inflation stabilization, see Woodford (2003). For

monetary policy it is therefore important to gauge the empirical relevance of this effect

and to learn how exactly inflation developments are transmitted to the RPV.

The empirical RPV literature has a long tradition and is extensive,1 but in our view

there is room for improvement along the following dimensions: First of all we allow

for the realistic possibility that firms which do not optimize their prices in a given pe-

riod raise their prices using some constant rate –possibly the average (“trend”) inflation

rate– or using the latest observed inflation rate.2 This broader framework implies that the

RPV-inflation relation is of a dynamic nature and inherently nonlinear, which for example

may imply that gradual instead of sudden inflation adjustments could be the best response

to past inflation deviations (in the sense of minimizing RPV). Furthermore we believe

that the existing literature has not taken sufficiently into account the fact that the general

level of inflation cannot be regarded as an exogenous variable.3 We show that the result-

ing endogeneity bias is empirically relevant and present new estimates using appropriate

instrumental-variables techniques (including GMM).

Our results are based on two intersectoral price datasets for the US. The first one

is composed of roughly 100 sectoral subaggregates of the producer price index (PPI),

whereas the second one uses about 25 consumer price index (CPI) categories. For both

datasets our results broadly confirm the general finding of an economically detrimental

1See for example Parks (1978), Bomberger and Makinen (1993), Reinsdorf (1994), Grier and Perry
(1996), Parsley (1996), Fielding and Mizen (2000), Silver and Ioannidis (2001).

2Similar assumptions appear in Smets and Wouters (2003), Christiano, Eichenbaum, and Evans (2005)
and many recent followers.

3The endogeneity of inflation becomes most apparent in another strand of the literature where price
dispersion is the explanatory variable that affects inflation, see for example Gerlach and Kugler (2007).
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effect of inflation on RPV.4 However, given the history of positive average inflation we

find that under the current pricing behavior of firms RPV is minimized for low but positive

levels of inflation.

While we employ a novel estimation approach, there are of course other recent strands

of the literature that analyze the RPV-inflation relationship in dynamic settings.5 For ex-

ample, Parsley (1996) and Nath (2004) estimate bivariate VARs that include inflation and

RPV; such a specification is somewhat at odds with theory, however, because in a linear

VAR a positive RPV response with respect to a positive money supply shock implies a

negative response with respect to a negative shock. In contrast, most theoretical models

posit that positive as well as negative monetary shocks should increase RPV. In terms

of dynamics the specification of Fielding and Mizen (2000) is related to ours, but they

do not test the possible endogeneity of the inflation rate. Grier and Perry (1996) use a

model where lagged RPV, lagged squared inflation and the conditional variance of infla-

tion all affect RPV. They explicitly state that they use lagged squared inflation to avoid

the endogeneity problem, but the endogeneity status of the conditional inflation variance

remains dubious. There is also a recent literature where the marginal impact of inflation

depends on the inflation level in a different way than a second-order polynomial of in-

flation: Bick and Nautz (2008) use threshold models with low, intermediate, and high

inflation regimes (but use a static relation), whereas Fielding and Mizen (2008) fit a non-

parametric smooth-transition function. 6

4This statement refers to specifications where either RPV is measured as the variance and is regressed
on squared inflation, or RPV is measured as the standard deviation and is regressed on the absolute value
of inflation. Although the latter regression equation is not strictly equivalent to the former because of
the additive constant and residuals, results tend to be similar. It is worthwhile noting that this finding is
mathematically compatible with a negative sign in a regression with RPV measured as the coefficient of
variation as in Reinsdorf (1994) or Silver and Ioannidis (2001), so attention must be paid to the precise
specification when interpreting the sign of the coefficient of inflation.

5It seems adequate to also mention Silver and Ioannidis (2001) although they do not consider a dynamic
setup. They perform a cross-country comparison and control for many other macroeconomic factors; how-
ever, in light of the large number of contemporaneous variables on the right-hand side it is surprising that
they do not check for endogeneity problems.

6The importance of inflation regimes on the relation between inflation and RPV is also emphasized by
Ahlin and Shintani (2007). They show that firms’ optimal pricing entails using different (s,S) bands in
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Another approach in the literature consists of using impulse-response analysis in VAR

systems that include individual commodity prices to measure the impact of monetary

policy shocks on the cross-sectional distribution of prices, see Bils, Klenow, and Kryvtsov

(2003), Lastrapes (2006), or Balke and Wynne (2007). This multi-price VAR approach is

a useful and promising alternative approach to the single-equation analysis of the standard

RPV literature. As always in VAR analysis, however, it is crucial to identify the monetary

shock correctly in order to get meaningful results, and how to identify a monetary shock is

a matter of ongoing research and controversy, apart from the fact that systematic monetary

policy is not covered in a shock-based VAR framework. In our nonlinear setup there are

also additional channels where the (time-average) variance and autocovariance of inflation

may matter.

The structure of this paper is straightforward: In section 2 we derive the estimated

equation, we discuss its interpretation, and we explain our estimation approach. In section

3 we present some characteristics of the datasets that we use, and in section 4 we report the

details of our specifications and the results of our analysis. Section 5 offers conclusions.

2 The framework

2.1 Specification and interpretation

The traditional approach in the RPV literature can be summarized in the following bivari-

ate regression:

rpvt = b0 +b2π
2
t +ub,t (1)

where typically a positive coefficient for squared inflation is found when estimating this

equation by OLS.7

high-inflation and low-inflation states of the world. The data from Mexico’s tequila crisis confirm their
theoretical results.

7Closely related is another widespread specification with the root of RPV as dependent and the absolute
value of inflation as the explanatory variable.
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In contrast, consider equation (2.24) from Woodford (2003) as a reference for a more

general framework:

rpvt = αrpvt−1 +
α

1−α
(πt− γπt−1)

2, (2)

which is derived from Calvo pricing with some degree of backward-looking indexation

by those firms who are assumed to be non-optimizing in the given period. In the simple

theoretical model the parameter α is the fixed proportion of non-optimizing firms, and γ

is the degree of indexation. As a starting point for our analysis we generalize this equation

in several directions:

• We add a constant term inside the squares term to account for positive average

inflation in general and accordingly for some fixed element in the indexation rule,

as opposed to the theoretical steady-state value of zero inflation.8

• Given that we use inter-sectoral price data we must depart from the theoretical

restriction linking the coefficients of lagged RPV and the squared term through

the single parameter α and instead we let those coefficients vary freely. However,

while the estimated coefficient of lagged RPV may preserve some resemblance to

the underlying fraction of non-optimizing firms, the empirical coefficient of the

squared term should not be expected to be close to α/(1−α), because the scale of

the RPV measure is essentially arbitrary.

Altogether, and after adding a general constant term to reflect the re-scaling of the in-

cluded variables, our baseline specification reads as follows:

rpvt = c0 + c1rpvt−1 + c2(πt− c3πt−1− c4)
2 +ut , (3)

where rpvt now refers to a standardized RPV measure (de-meaned and with unit variance)

to facilitate the comparison of coefficients across datasets, and πt is observed month-on-
8See for example Ascari (2004) for initial work on the problems of non-zero average inflation for

business-cycle models.
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month inflation expressed in annualized percentage rates. For details of the RPV con-

struction see the data section 3.

Let us use cπ to denote the implicit constant indexation rate by which non-optimized

prices are increased on average, and which is given by

cπ =
c4

1− c3
. (4)

From equation (3) it is obvious that the average RPV is minimized when the squared term

is zero on average, i.e. if the constant indexation term satisfies cπ = π̄ , for any given

average inflation rate. However, we do not impose this restriction a priori, for example

because imperfect competition in goods markets may induce firms to raise prices only

cautiously for fear of losing customers. Instead we let the data speak freely about its

value, and we can then test whether it is actually equal to average inflation.9 Another very

interesting hypothesis is whether cπ = 0, which would mean that firms do not index their

prices according to some fixed rate. In that case it would be optimal for monetary policy

(in the sense of minimizing RPV) to target zero inflation.10 Given a positive average

inflation rate it seems reasonable to treat this as a one-sided test.

Note that most coefficients are expected to be non-negative (c2,c4,c1), and thus many

other significance tests will also be interpreted as one-sided. However, as some slight

overshooting behavior in the indexation rule cannot be ruled out a priori, c3 may be pos-

itive or negative as long as its absolute value is smaller than unity for stability reasons.

Obviously the traditional bivariate specification is nested in our model by considering the

case c1 = c3 = c4 = 0. Intermediate cases are also possible, such as irrelevance of past

inflation (c3 = 0) or irrelevance of a constant term (c4 = 0) for the indexation rule. There-
9Given the joint covariance matrix of the estimators of c3,c4 we can construct (asymptotically valid)

confidence intervals and test statistics using the delta method.
10If cπ > 0 it may still be optimal to target zero inflation for reasons other than the RPV channel, but then

policy makers would need to convince agents to adjust their inflationary expectations and their behavior; in
other words, a regime change would be needed then.
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fore the data have a chance to indicate whether the dynamic and nonlinear extensions are

actually needed.

A slightly different but of course related perspective on the relationship (3) can be

offered by taking its expectation, where we use the facts that Var(x) = E(x2)−E2(x) and

AutoCov(x,x−1) = E(xx−1)−E2(x), and we abstract from small differences due to initial

observations by setting E(xt) = E(xt−1) = E(x). Some algebra yields:

(1− c1)E(rpv) = c0 + c2c2
4 + c2(1+ c2

3)Var(π)

+c2(1− c3)
2E2(π)+2c2c4(c3−1)E(π) (5)

−2c2c3AutoCov(π,π−1)

Here several things are worth noting: First and foremost, second-order moments of

inflation are relevant for the expected level of RPV due to the non-linearity of equation

(3). It can be seen that as long as inflation has any impact on RPV at all, i.e. c2 > 0,

then the variance of inflation affects RPV positively (i.e., adversely), and the average

inflation rate affects RPV as a second-order polynomial. Another implication is that if

non-optimized prices are indexed to past inflation rates, then the persistence of inflation as

measured by its autocovariance also affects average RPV levels. For the case of a positive

value of c3, higher persistence of inflation means higher predictability of inflation which

would reduce average price distortions.

The nonlinear equation (3) must be estimated by nonlinear instrumental-variables or

GMM techniques, and we will present the according estimates for the PPI dataset. How-

ever, there are two problems that lead us to consider a linearized generalization of (3) as

well: First, in a nonlinear setting it is not the case anymore that the least-squares estimator

is efficient compared to the instrumental-variable estimator, which means that testing for

endogeneity bias with the Hausman test would be impossible. Secondly, in the case of
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the CPI dataset we encountered numerical problems such that the estimators were clearly

unreliable or did not converge. Therefore we also work with the following linearized

equation which is more general. In a first step, we multiply out the squared term to arrive

at an additive model with nonlinear parameter restrictions:

rpvt = c0+c1rpvt−1+c2π
2
t −2c2c3πtπt−1−2c2c4πt +c2c2

3π
2
t−1+2c2c3c4πt−1+c2c2

4+ut

Next we generalize this equation by letting the regression coefficients vary freely,

yielding the equation that will be used for estimation:

rpvt = a0 +a1rpvt−1 +a2π
2
t +a3πtπt−1 +a4πt +a5π

2
t−1 +a6πt−1 + εt , (6)

where of course a0 = c0 + c2c2
4, a1 = c1, a2 = c2, a3 =−2c2c3, a4 =−2c2c4, a5 = c2c2

3,

and a6 = 2c2c3c4 should ideally hold, but to be able to apply linear estimation methods we

do not impose these restrictions, and therefore deviations from this mapping will happen

in practice. In that sense the results should be interpreted with the necessary caution. For

a2 and a5 we expect positive signs, whereas a negative sign should result for a4. Since

equation (6) contains two more free parameters than equation (3), not all coefficients of

the former are expected to be individually significant even if all parameters of (3) are

relevant. For example, a3 and a5 are products of small numbers (of the unit interval) and

therefore could be hard to distinguish from zero empirically even if their true value is

non-zero.

Nevertheless, the overall impact of the inflation polynomial should be directly re-

flected in the a2 parameter, and given an estimate of the linearized equation (6) we can

test the other interesting hypotheses as follows:

1. First, c3 = 0 (irrelevance of past inflation for indexed prices) can be tested by con-

sidering a3 = 0 (provided that c2 6= 0).
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2. Next, the test of cπ = π̄ (the constant indexation rate equals average inflation)

amounts to a test of the hypothesis −a4/(2a2 + a3) = π̄ (again with the delta

method).

3. And finally, the related hypothesis cπ = 0 (no constant indexation term, as a one-

sided test) can simply be tested as a4 = 0, which is linked to cπ = 0 via the condition

c4 = 0. Alternatively we could again use the delta method and test −a4/(2a2 +

a3) = 0.

The decomposition of the impact of inflation moments on average RPV can of course also

be calculated within the linearized parametrization, which yields:

(1−a1)E(rpv) = a0 +(a2 +a5)Var(π)

+(a2 +a3 +a5)E
2(π)+(a4 +a6)E(π) (7)

+a3AutoCov(π,π−1)

As before, the possible relevance of past inflation for indexation (i.e. a3 6= 0) would

directly imply that the persistence (autocovariance) of inflation affects average RPV lev-

els.

2.2 Estimators

Apart from OLS which is used for comparison purposes or whenever the endogeneity

problem is not relevant, we employ standard instrumental-variable estimators (IV) or

generalized method-of-moments approaches (GMM). The test for endogeneity bias is the

standard Hausman test. However, since the three regressors πt ,πtπt−1,π
2
t are all functions

of a single endogenous variable, it is not entirely clear whether the appropriate degrees of

freedom for this test are really three. To be on the safe side here we could also evaluate
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the test statistic under the χ2 distribution with only two degrees of freedom, such that the

test with three degrees of freedom will be conservative. As a check of the validity of the

instruments we use the standard Sargan test whenever possible.

For the GMM estimator we use a two-step variant with an initial weighting matrix

based on (Z′Z)−1, where Z is the matrix of instruments. For the linearized variants this

essentially means that a consistent estimate of the weighting matrix is formed based on

first-step IV estimates. This estimated weighting matrix is then used to calculate the

second-step GMM estimates. Since the two-step GMM estimator is already asymptot-

ically efficient, the J test for validity of the overidentifying orthogonality conditions is

available.

All computations and estimations were performed with gretl 1.8 (Cottrell and Luc-

chetti, 2009).

3 Data

(For details see the data appendix.) We use monthly sectoral sub-indices along with ap-

propriate weights series from the PPI and the CPI to calculate the time series of the cross-

sectional variances as our measures of RPV.11 Our CPI-based time series only start in

1999 because the CPI composition changed in 1998, but the PPI analysis covers a longer

time span. Apart from this exogenously given data availability, we consider the PPI data to

be more relevant for analyzing domestic price setting behavior because the CPI partially

reflects import prices and indirect taxes.

11Silver and Ioannidis (2001) argue that using the coefficient of variation instead of the variance or stan-
dard deviation is advisable because uniform growth of all disaggregate variables induces a spurious increase
of the cross-sectional variance (due to the scale dependence of the variance). However, this argument does
not hold for variables in logarithms, but only holds for “raw” variables. While they treat the sectoral infla-
tion rates as the “raw” variables from which the cross-sectional variance is computed, we follow economic
theory by regarding the sectoral price index levels as the relevant “raw” input and take logarithms. Then
we apply the typical next step of the RPV literature and filter out idiosyncratic long-run trends of the sec-
toral log prices with the first-difference filter, but that still means that the sectoral components have been
log-transformed.
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Since we use 100 PPI sub-groups, figure 1 only depicts the 15 largest PPI sub-aggregates

that together cover 55 per cent of the aggregate PPI. The time series of all CPI sub-indices

are shown in figure 2. The visual impression strongly confirms the need to filter out the

idiosyncratic sectoral trends prior to the calculation of the cross-sectional variance, oth-

erwise this variance series would be clearly trending upwards. Of course, in the existing

RPV literature as well as in this paper this is achieved by taking first differences of the

sub-indices and thus by actually looking at relative inflation variability.12 Thus we con-

structed the relative inflation variability by using the formula

rpvn
t = ∑

i
wi(∆log(pi,t)−∆log(p̄t))

2,

where pi,t is the price index of the i-th PPI (or CPI) sub-group, p̄t denotes aggregate PPI

(CPI) and wi is the weight of the i-th sub-group in the aggregate price index. Finally this

RPV measure is standardized to have a mean of zero and unit variance, rpv = (rpvn
t −

rpvn
t )/

√
V(rpvn

t ).

The inflation and RPV time series for both datasets are shown in figures 3 and 4.

Given that inflation is squared in our equation, it is especially important to remove the

most apparent outliers of the inflation series. For the extraordinary price hike especially in

fuels and private transportation due to hurricane Katrina in 2005m9 we therefore include

an additive impulse dummy as a regressor and instrument in all equations.

Since we are working with a dynamic framework it seems worthwhile to consider

some descriptive statistics concerning the dynamic properties of the individual time series.

12Even after filtering out the (deterministic as well as stochastic) trends from the sectoral sub-indices,
one may wonder how it is possible to calculate a meaningful measure of cross-sectional dispersion given
that the levels of each of these sub-indices is arbitrary. Indeed, if log(pi,t) is the price index of sector i, the
sample mean of ∆log(pi,t) describes the time-average but sector-specific price trend. These sector-specific
long-run characteristics should also be filtered out for business-cycle analysis because they describe long-
run intersectoral equilibria, and for RPV studies we are interested in deviations from this equilibrium. Thus
in principle the sectoral inflation rates should be demeaned before calculating the cross-sectional variance,
something that has never been done in the RPV literature to our knowledge. However, for our datasets it
turned out that the additional de-meaning did only make a negligible difference, and thus we followed the
existing literature and did not perform the de-meaning, either.
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Figure 1: PPI subindices. To avoid clutter only the indices of the 15 most important
categories are shown. Raw index values, rebased to the common base period 2000m1.
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Figure 2: CPI subindices. Raw index values, rebased to the common base period 2000m1.
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Figure 3: PPI inflation and (standardized) RPV data
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Figure 4: CPI inflation and (standardized) RPV data.
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Figure 5: Dynamic characteristics of PPI inflation and RPV. Partial auto-correlation coef-
ficients, upper panel inflation, lower panel RPV.

Figures 5 and 6 show the (partial) autocorrelation functions of inflation and RPV in both

datasets. It can be seen that the PPI RPV contains first-order serial correlation, whereas

the CPI RPV series is close to being white noise. But one issue here is the smaller sample

of the CPI data which renders the uncertainty around the autocorrelation estimates fairly

large. For PPI inflation the positive first-order autocorrelation is also obvious, but for CPI

inflation in this fairly short sample of monthly data not much persistence is apparent.

4 Empirical results

4.1 Chosen instruments

Given that in the macroeconomy all contemporaneous variables are potentially endoge-

nous we limit ourselves to lagged values of the variables described below, but finding

appropriate instruments generally remains a difficult problem. We tackle this issue by

implementing the following algorithm:

1. Apart from own lags of the potentially endogenous variables (πt , π2
t , πtπt−1) and
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Figure 6: Dynamic characteristics of CPI inflation and RPV. Partial auto-correlation co-
efficients, upper panel inflation, lower panel RPV.

of RPV we include (lags of) the following variables as potential instruments: the

federal funds rate, the 3-month treasury bill rate, the unemployment rate, and a (log-

differenced) industrial production index. Because of the nonlinear transformation

of inflation we also consider (lags of) squares (x2
t ) and intertemporal cross products

(xtxt−1) of all those variables.

2. For each of the three variables (πt , π2
t , πtπt−1) we set up a linear regression with

the entire set of potential instruments as explanatory variables.

3. For each of these auxiliary equations we perform an exhaustive general-to-specific

reduction which is automated by PcGets (Hendry and Krolzig, 2001). The Gets

method starts with the general model and removes redundant regressors succes-

sively.

4. The set of chosen instruments is given by the union of the regressors selected by

Gets in the three auxiliary equations.13

13For the traditional bivariate specification, which is reported below for comparison purposes, we only
include the regressors selected in the π2

t -equation because πt and πtπt−1 do not enter in the bivariate equa-
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Table 1: Selected instruments
specification instruments

CPI bivariate πt−1πt−2, tbrt−2
PPI bivariate π2

t−1, πt−1πt−2
CPI πt−2, πt−1πt−2, f f rt−2, tbrt−1, tbrt−2, rpvt−1rpvt−2
PPI πt−2, πt−1πt−2, rpv2

t−2, rpvt−1rpvt−2, rpvt−2rpvt−3, ip2
t−1,

f f rt−1, f f rt−2

Notes: federal funds rate ( f f r), 3-month treasury bill rate (tbr), unemployment rate (u),
(log-differenced) industrial production (ip). “Bivariate” refers to (1).

The instruments selected by this algorithm for each PPI and CPI specification are listed

in table 1.

4.2 Estimates

The estimates of our various specifications and datasets are reported in tables 2 through

4.14 All equations include a dummy for the effects of hurricane Katrina, except where

explicitly stated otherwise.

All specifications show the expected positive impact of squared inflation which re-

flects the positive sign of c2 in the theoretical equation. A somewhat surprising result

is given by the relatively low values of the c1 or a1 coefficients relating to lagged RPV;

for the CPI estimates it is even negative or insignificant. The Hausman test indicates that

there is an endogeneity problem with respect to inflation for both datasets and thus the

standard OLS approach suffers from the corresponding endogeneity bias. In contrast, it is

reassuring that the Sargan and J over-identification tests confirm the validity of the used

instruments or moment conditions. The diagnostic tests indicate that the residuals of all

specifications are free from autocorrelation and ARCH effects; in any case we use robust

tion. Here it sometimes turned out that it was only possible to satisfy the Sargan tests for instrument validity
if some of the originally selected instruments were removed for that specification.

14For comparison purposes the next subsection includes the results of the traditional bivariate-static ap-
proach.
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estimates for the covariance matrices.

The direct estimation of the nonlinear equation (3) with the PPI data is displayed in

table 2. Whether or not the Katrina dummy is included does not change the qualitative

results, which indicate that the coefficient of past inflation is nearly zero and statistically

insignificant, but that the constant indexation term is plausible and significant. As dis-

cussed before, this means that (some of the) non-optimized prices are raised according

to an indexation rule which does not refer to aggregate inflation of the last period, but

instead using the same rate over time.

The irrelevance of past aggregate inflation for indexation is also found in the linearized

version of the equation when estimated with the PPI data, see table 5 for a comparison of

all specifications. This also means that we find no evidence that higher persistence (first-

order autocovariance) of inflation would decrease average RPV levels. However, in that

table we also see that the estimates with the CPI data imply a different conclusion; there

past inflation seems relevant and the implied value for c3 is â3/(−2â2) = 0.33 (using the

linearized GMM estimates from table 4), which is also plausible. Thus it appears to be

important which price data is used to analyze price dispersion. Given the tax and foreign

trade content of the CPI we regard the PPI data as better suited to tackle RPV issues.

In table 6 we have assembled the tests and estimates relating to the (implicit) con-

stant term cπ of the indexation rule. We already saw in table 2 that the direct nonlinear

estimates indicate the importance of this term, given the significance of the c4 estimate.

The results in table 6 show that this finding is confirmed by the CPI variants but not by

the linearized specifications with the PPI data. This discrepancy between the nonlinear

and linearized PPI estimates is somewhat unfortunate but the linearized PPI estimates are

actually not very informative at all with respect to the constant indexation term; the test

of the hypothesis that this indexation term equals the observed average inflation rate in

the last column of table 6 cannot be rejected either in the linearized PPI variant. More

importantly, however, this is a uniform result of all specifications and therefore our results
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Table 2: Nonlinear GMM estimates (PPI data)
rpvt = c0 + c1rpvt−1 + c2(πt− c3πt−1− c4)

2 +ut

w/o dummies w/ Katrina dummy

c0
−0.31∗∗

0.044
−0.31∗∗

0.042

c1
0.12
0.052

∗ 0.11
0.050

∗

c2×100
0.28∗∗

0.030
0.28∗∗

0.029

c3
−0.052

0.0709
−0.038

0.0629

c4
3.36∗
1.583

4.54∗∗
1.569

J over-id test 9.19 [.24] 10.5 [.16]
R2 .62 .63

Notes: π is annualized monthly inflation. HAC-robust standard errors below estimates,
p-values in brackets. R2 defined as squared correlation between actual and fitted.
∗ – 5%, ∗∗ – 1% significance level (one-sided t-test for c1,c2,c4)

are compatible with the assumption that prices are indexed to what is sometimes called

“trend inflation”.

4.3 Memo item: traditional bivariate specifications

For purposes of comparison we also report estimates of traditional bivariate specifica-

tions in table 7, although we know from our main results that the traditional specifications

will suffer from omitted variable bias. Not surprisingly we still find a positive effect of

(squared) inflation on RPV. However, we detect significant error autocorrelation, and for

the CPI dataset we find that the Hausman test rejects the OLS estimates due to endogene-

ity problems, as well as a considerably worse fit. Therefore we reach the clear verdict that

the traditional specification is not an adequate model of the RPV-inflation relation.
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Table 3: Linearized estimates for the PPI data
rpvt = a0 +a1rpvt−1 +a2π2

t +a3πtπt−1 +a4πt +a5π2
t−1 +a6πt−1 + εt

memo: OLS IV GMM

const (a0)
−0.20∗∗

0.043
−0.25∗∗

0.047
−0.28∗∗

0.038

rpvt−1 (a1)
0.22∗∗

0.060
0.18∗
0.078

0.19∗∗
0.069

π2
t (a2×100)

0.31∗∗
0.020

0.43∗∗
0.073

0.43∗∗
0.060

πtπt−1
(a3×100)

−0.061
0.0332

−0.080
0.0643

−0.071
0.0640

πt (a4×100)
−0.55

0.645
−0.51

1.448
−0.28

1.163

π2
t−1 (a5×100)

−0.055∗
0.0260

−0.098∗∗
0.0338

−0.096∗∗
0.0305

πt−1 (a6×100)
−1.1
0.71

−2.0∗∗
0.69

−1.7∗∗
0.55

Sargan/J
over-id test

n.a. 3.91 [.56] 4.29 [.51]

Hausman 11.70 [.008] n.a.
no AC(6) 1.77 [.11] 0.69 [.66] n.a.

no ARCH(2) 1.24 [.54] 2.48 [.29] n.a.
R2 .68 .67 .67

Notes: π is annualized monthly inflation. HAC-robust standard errors below estimates,
p-values in brackets. R2 defined as squared correlation between actual and fitted.
Sargan over-identification test for IV-estimation, J-test for GMM-estimation.
∗ – 5%, ∗∗ – 1% significance level (one-sided t-test for a1,a2)
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Table 4: Linearized estimates for the CPI data
rpvt = a0 +a1rpvt−1 +a2π2

t +a3πtπt−1 +a4πt +a5π2
t−1 +a6πt−1 + εt

memo: OLS IV GMM

c (a0)
−0.276∗∗

0.066
−0.171

0.106
−0.165

0.096

rpvt−1 (a1)
−0.054

0.119
−0.051

0.195
0.011
0.188

π2
t (a2)

0.050∗∗
0.006

0.043∗∗
0.016

0.052∗∗
0.013

πtπt−1 (a3)
−0.004

0.009
−0.044∗

0.021
−0.034

0.010

∗∗

πt (a4)
−0.261∗∗

0.039
−0.212∗

0.108
−0.277

0.081

∗∗

π2
t−1 (a5)

0.007
0.006

0.016∗
0.009

0.0095
0.0084

πt−1 (a6)
0.011
0.044

0.044
0.054

0.057
0.047

Hausman
no-endog. test

21.32 [0.00] n.a.

Sargan/J
over-id test

n.a. 4.25 [0.24] 3.16 [0.37]

AC(6) test 0.19 [0.98] 0.64 [0.70] n.a.
ARCH(2) test 2.77 [0.25] 4.24 [0.12] n.a.

R2 0.82 0.66 0.75

Notes: π is annualized monthly inflation. HAC-robust standard errors below estimates,
p-values in brackets. R2 defined as squared correlation between actual and fitted.
Sargan over-identification test for IV-estimation, J-test for GMM-estimation.
∗ – 5%, ∗∗ – 1% significance level (one-sided t-test for a1,a2)
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Table 5: Test for relevance of past inflation for indexation
Specification test statistic p-value

PPI
memo: linearized OLS -1.83 .068

linearized IV -1.24 .22
linearized GMM -1.10 .27
nonlinear GMM -0.60 .55

CPI
memo: linearized OLS -0.44 .66

linearized IV -2.13 .034
linearized GMM -3.23 .001

Notes: Tests based on the parameters c3 and a3, two-sided. If these are non-zero, this
also implies that the autocovariance of inflation affects average RPV levels, see the
text.

Table 6: Tests and estimates relating to the constant term for indexation
Specification estimated cπ test of

cπ = 0
(based on
c4 or a4)

test of
cπ = 0
(delta

method)

test of cπ = π̄

PPI
memo: linearized OLS 0.99 0.86 [.20] 0.88 [.19] -1.14 [.25]

linearized IV 0.66 0.35 [.36] 0.36 [.36] -0.89 [.37]
linearized GMM 0.36 0.24 [.40] 0.25 [.40] 1.33 [.18]
nonlinear GMM 4.37 2.89 [.002] 3.07 [.001] 1.47 [.14]

CPI
memo: linearized OLS 2.73 6.74 [0] 14.15 [0] -0.72 [.47]

linearized IV 4.95 1.97 [.025] 1.74 [.041] 0.74 [.46]
linearized GMM 3.92 3.41 [.001] 4.02 [0] 1.08 [.28]

Notes: P-values in brackets. The parameter cπ describes the constant indexation compo-
nent of non-optimized prices, for details see the text. Observed mean inflation is
given by π̄ . The tests for cπ = 0 are one-sided.
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Table 7: Bivariate estimates
rpvt = b0 +b2π2

t +ut

CPI-OLS CPI-IV CPI-IV w/o
Katrina
dummy

PPI-OLS PPI-IV

c (b0) −0.423∗∗
0.056

−1.293
0.694

−1.202∗∗
0.461

−0.30∗∗
0.047

−0.30∗∗
0.060

π2
t (b2) 0.022∗∗

0.005
0.073
0.042

0.063∗
0.025

0.0030∗∗
0.00024

0.0031∗∗
0.001

Hausman
no-endog. test

3.54 [.06] 10.16 [0] 0.24 [.63]

Sargan over-id.
test

n.a. 2.34 [.13] 0.02 [.88] n.a. 0.74 [.39]

AC(6) test 1.92 [.09] 0.48 [.82] 2.51 [.03] 4.56 [0] 3.99 [.001]
ARCH(2) test 0.30 [.86] 4.47 [.11] 7.74 [.02] 1.64 [.44] 1.55 [.46]

R2 0.41 0.30 0.42 0.61 0.61

Notes: π is annualized monthly inflation. Robust standard errors below estimates, p-
values in brackets. R2 defined as squared correlation between actual and fitted. In
the CPI-IV variant the Katrina dummy is actually redundant but affected the test
results, hence we also present the specification without it.
∗ – 5%, ∗∗ – 1% significance level
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5 Conclusions

In this paper we have revisited the single-equation approach to measuring the impact

of inflation on price dispersion (RPV). Employing a non-linear functional form derived

from economic theory with some generalizations, our approach reflects the possibility

that some price setters may partially index their own prices to past inflation rates and/or

raise them by a constant rate in each period. We also took special care of the potential

endogeneity of inflation, which is usually ignored in the RPV literature. Analyzing two

datasets with sectoral sub-aggregates of the PPI and the CPI in the USA we found that

the endogeneity bias as well as the extensions are empirically relevant, which casts some

doubts on many estimates in the literature.

In some sense, our results are nevertheless still in accordance with many earlier find-

ings, as they also show that inflation fluctuations increase RPV. This effect is the main

channel of modern theoretical monetary models through which inflation reduces welfare,

and therefore our results support this assumption. But in our generalized specification we

found that average (“trend”) inflation is taken into account by price setters in their index-

ation rule, and therefore historical average inflation rates are the relevant benchmark to

measure inflation deviations. Another finding is that yesterday’s inflation rates seem less

important for price indexation. This means that our results do not provide strong evidence

in favor of a policy of gradual instead of sudden inflation adjustments after inflation has

deviated from its historical average.

When comparing our results to other results in the literature it is important to bear

in mind that our results refer exclusively to expected inflation. The reason is our use of

instrumental-variable techniques in conjunction with our choice of lagged variables as

instruments,15 and those can only contain information for the expected part of inflation.

The flip side of this statement is that it may well be the case that earlier analyses of

15We confined ourselves to lagged variables as instruments because ultimately any contemporaneous
macro variable is likely to be endogenous in the sense of being correlated with innovations in RPV.
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unexpected inflation all suffer from endogeneity biases. However, it is also important to

acknowledge that no omitted-variable bias arises in our estimates because by definition

unexpected inflation is uncorrelated with expected inflation. Furthermore, assessing the

cost of expected inflation appears much more important for policy makers, because that

is the cost arising from systematic policy, whereas the Lucas critique teaches that effects

of unexpected inflation could not be exploited by policy anyway.

With respect to future work the most pressing issue concerning the theoretical founda-

tion of the estimated equation is related to the non-zero average levels of inflation. Here

it would be desirable to have a rigorous derivation of the RPV-inflation relation with non-

zero equilibrium inflation, but theoretical work has just recently begun to take the issue of

trend inflation seriously. Future empirical work would naturally search for more or other

valid instruments to check the robustness of the results.
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A Data appendix

A.1 PPI Data

The source for both datasets is the US Department of Labor (Bureau of Labor Statistics).

The PPI data consists of the index values of 100 sub-aggregates that altogether cover the

aggregate PPI, taken from the web site of the Bureau of Labor Statistics (BLS). The data

is given in monthly form, starting 1985m01 and extending until 2006m12. The data is

not seasonally adjusted, and the aggregate PPI was generated by weighting and summing

all sub-aggregate indices. Since weight series are not available, the weights are constant

over time.

The PPI sub-aggregates are as follows: 1. Fruits & melons, fresh/dry vegs.&nuts,

2. Grains, 3. Slaughter livestock, 4. Slaughter poultry, 5. Plant and animal fibers, 6. Fluid

milk, 7. Chicken eggs, 8. Hay, hayseeds and oilseeds, 9. Cereal and bakery products,

10. Meats, poultry and fish, 11. Dairy products, 12. Processed fruits and vegetables,

13. Sugar and confectionery, 14. Beverages and beverage materials, 15. Fats and oils,

16. Miscellaneous processed foods, 17. Prepared animal feeds, 18. Synthetic fibers, 19. Pro-

cessed yarns and threads, 20. Gray fabrics, 21. Finished fabrics, 22. Apparel & other

fabricated textile products, 23. Miscellaneous textile products/services, 24. Hides and
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skins, incl. Cattle, 25. Leather, 26. Footwear, 27. Other leather and related products,

28. Coal, 29. Gas fuels, 30. Electric power, 31. Utility natural gas, 32. Crude petroleum

(domestic production), 33. Petroleum products, refined, 34. Petroleum and coal products,

n.e.c., 35. Industrial chemicals, 36. Paints and allied products, 37. Drugs and pharma-

ceuticals, 38. Fats and oils, inedible, 39. Agricultural chemicals and chemical products,

40. Plastic resins and materials, 41. Other chemical and allied products, 42. Rubber and

rubber products, 43. Plastic products, 44. Lumber, 45. Millwork, 46. Plywood, 47. Other

wood products, 48. Logs, bolts, timber and pulpwoods, 49. Prefabricated wood buildings

and components, 50. Treated wood and contract wood preserving, 51. Pulp, paper and

prod., ex.bldg.paper, 52. Building paper & building board mill products, 53. Publications,

printed matter & printing material, 54. Iron and steel, 55. Nonferrous metals, 56. Metal

containers, 57. Hardware, 58. Plumbing fixtures and fittings, 59. Heating equipment,

60. Fabricated structural metal products, 61. Miscellanous metal products, 62. Metal treat-

ment services, 63. Agricultural machinery and equipment, 64. Construction machinery

and equipment, 65. Metalworking machinery and equipment, 66. General purpose ma-

chinery and equipment, 67. Electronic computers and computer equipment, 68. Special

industry machinery and equipment, 69. Electrical machinery and equipment, 70. Miscel-

laneous instruments, 71. Miscellaneous machinery, 72. Household furniture, 73. Com-

mercial furniture, 74. Floor coverings, 75. Household appliances, 76. Home electronic

equipment, 77. Other households, durable goods, 78. Glass, 79. Concrete ingredients and

related products, 80. Concrete products, 81. Clay construction products ex. Refractories,

82. Refractories, 83. Asphalt felts and coatings, 84. Gypsum products, 85. Glass con-

tainers, 86. Other nonmetallic minerals, 87. Motor vehicles and equipment, 88. Aircraft

and aircraft equipment, 89. Ships and Boats, 90. Railroad equipment, 91. Transporta-

tion equipment, n.e.c., 92. Toys, sporting goods, small arms, etc., 93. Tobacco products,

incl. stemmed & redries, 94. Notions, 95. Photographic equipment and supplies, 96. Mo-

bile homes, 97. Medical, surgical & personal aid devices, 98. Industrial safety equipment,
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99. Mining services, 100. Other miscellaneous products.

A.2 CPI Data

All CPI data are US city averages for All Urban Consumers which, according to the BLS,

covers approximately 87 percent of the total U.S. population. Our data consists of index

values of 25 CPI sub-aggregates, altogether covering the entire aggregate CPI. We use

monthly series from 1999m01 through 2007m07, seasonally adjusted at the source except

for the photo category. Our sample start is determined by the 1998 revision of the CPI

sub-aggregates. All series were rebased to 2000m01. We generated the aggregate CPI

series by a weighted sum of all sub-aggregates. The weights time series used to generate

this series are also provided by the BLS (annual frequency).

The CPI sub-aggregates after the 1998 CPI revision are as follows: 1. Food, 2. Alco-

holic beverages, 3. Shelter, 4. Fuels and utilities, 5. Household furnishings and operations,

6. Men’s and boys’ apparel, 7. Women’s and girls’ apparel, 8. Footwear, 9. Infants’ and

toddlers’ apparel, 10. Jewelry and watches, 11. Private transportation, 12. Public trans-

portation, 13. Medical care commodities, 14. Medical care services, 15. Video and audio,

16. Pets, pet products and services, 17. Sporting goods, 18. Photography, 19. Other recre-

ational goods, 20. Recreation services, 21. Recreational reading materials, 22. Education,

23. Communication, 24. Tobacco and smoking products, 25. Personal care.
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